moead_framework.core.sps_strategy.sps_dra.SpsDra¶
-
class
moead_framework.core.sps_strategy.sps_dra.
SpsDra
(algorithm_instance)[source]¶ Bases:
moead_framework.core.sps_strategy.abstract_sps.SpsStrategy
The strategy used in MOEA/D-DRA.
Q. Zhang, W. Liu and H. Li, “The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances” 2009 IEEE Congress on Evolutionary Computation Trondheim, 2009, pp. 203-208 doi: 10.1109/CEC.2009.4982949.
The strategy requires the attribute pi in the algorithm to stock all utility values of each sub-problems. This attribute is a list with the same size as the number of available sub-problems.
-
__init__
(algorithm_instance)¶ Constructor of the Sub-Problem Selection Strategy
- Parameters
algorithm_instance – {
AbstractMoead
} instance of the algorithm
Methods
__init__
(algorithm_instance)Constructor of the Sub-Problem Selection Strategy
Select at first the indexes of the sub problems whose objectives are MOP individual objectives fi (i.e.
get boundaries sub-problems
-
get_sub_problems
()[source]¶ Select at first the indexes of the sub problems whose objectives are MOP individual objectives fi (i.e. boundaries sub-problems) and add sub-problems with a 10-tournament
- Returns
{list<integer>} indexes of sub-problems
-
get_xtrem_index
()¶ get boundaries sub-problems
- Returns
{list<integer>} indexes of sub-problems
-