moead_framework.problem.combinatorial.rmnk.Rmnk¶
-
class
moead_framework.problem.combinatorial.rmnk.
Rmnk
(instance_file=None, rho=None, m=None, n=None, k=None, links=None, tables=None)[source]¶ Bases:
moead_framework.problem.problem.Problem
Implementation of the multiobjective NK landscapes with tunable objective correlation. The problem is compatible with files generated by the mocobench generator http://mocobench.sourceforge.net/index.php?n=Problem.RMNK
Example:
>>> from moead_framework.problem.combinatorial import Rmnk >>> >>> # The file is available here : https://github.com/moead-framework/data/blob/master/problem/RMNK/Instances/rmnk_0_2_100_1_0.dat >>> # Others instances are available here : https://github.com/moead-framework/data/tree/master/problem/RMNK/Instances >>> instance_file = "moead_framework/test/data/instances/rmnk_0_2_100_1_0.dat" >>> rmnk = Rmnk(instance_file=instance_file) >>> >>> # Generate a new solution >>> solution = rmnk.generate_random_solution() >>> >>> # Print all decision variables of the solution >>> print(solution.decision_vector) >>> >>> # Print all objectives values of the solution >>> print(solution.F)
-
__init__
(instance_file=None, rho=None, m=None, n=None, k=None, links=None, tables=None)[source]¶ Constructor of the problem
- Parameters
objective_number – {integer}
Methods
__init__
([instance_file, rho, m, n, k, …])Constructor of the problem
evaluate
(x)Evaluate the given solution for the current problem and store the outcome
f
(function_id, decision_vector)Evaluate the decision_vector for the objective function_id
Generate a random solution for the current problem
init_with_data
(rho, m, n, k, links, tables)init_with_instance_file
(instance_file)load_links
(file_content)Load links from the instance file
load_tables
(file_content)Load tables from the instance file
sigma
(function_id, solution_array, item)Compute the sigma value
-
dtype
¶ alias of
builtins.float
-
evaluate
(x: Union[moead_framework.solution.base.Solution, Sequence]) → moead_framework.solution.one_dimension_solution.OneDimensionSolution¶ Evaluate the given solution for the current problem and store the outcome
- Parameters
x – A {Solution} containing all decision variables
- Returns
-
f
(function_id: int, decision_vector: numpy.ndarray)[source]¶ Evaluate the decision_vector for the objective function_id
- Parameters
function_id – {integer} index of the objective
decision_vector – {
OneDimensionSolution
} solution to evaluate
- Returns
{float} fitness value
-
load_links
(file_content)[source]¶ Load links from the instance file
- Parameters
file_content – {list<float>} content of the instance file
- Returns
{integer} the number of line
-